

You have selected an area with the following characteristics:

Areas with high water table, and/or areas prone to flood or regular outbreaks of waterborne diseases (e.g. Cholera) pose serious risk to public health. These areas are considered "stress areas" requiring emergency intervention.

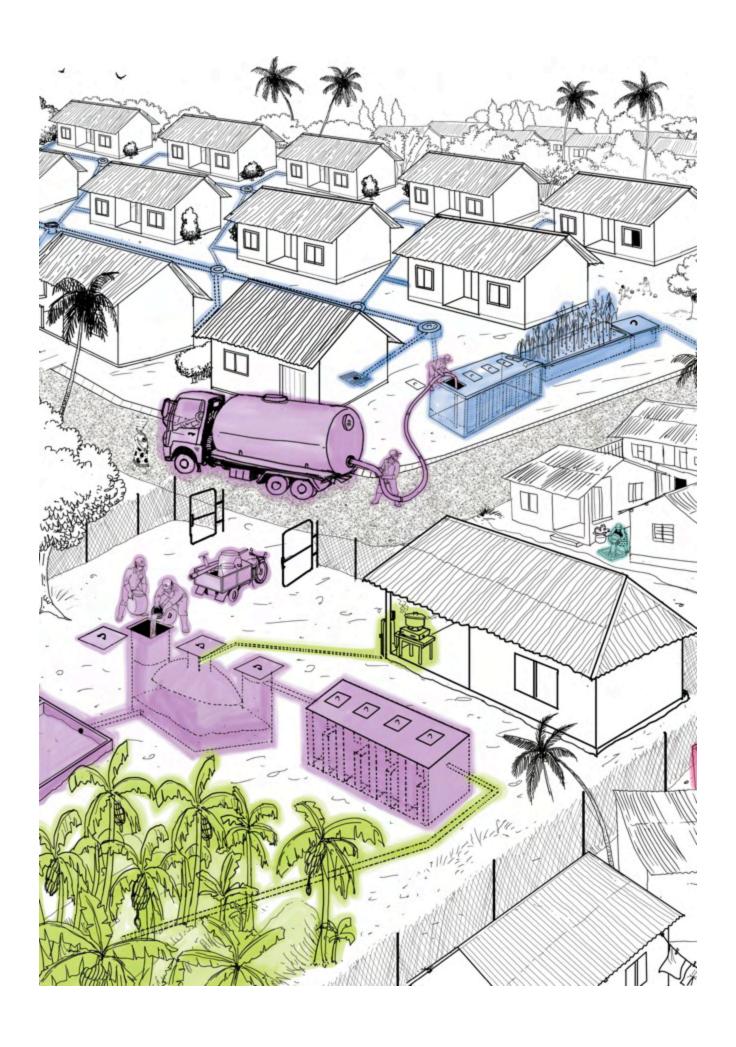
The combination of these three parameters + additional local data is useful for shortlisting suitable "environmental sanitation" solutions for specific areas in Dar es Salaam).

NOTE: SEEK EXPERT CONSULTATION BEFORE IMPLEMENTATION

Prior to implementation, it is essential to consult with environmental sanitation experts and key stakeholders, to identify the true landscape and needs of the beneficiaries. This can be conducted in the form of a feasibility study or field surveys in selected areas.

Selection of the most suitable sanitation solutions also needs to include a thorough economic analysis. Only then can the most feasible environmental sanitation interventions for specific areas be implemented.

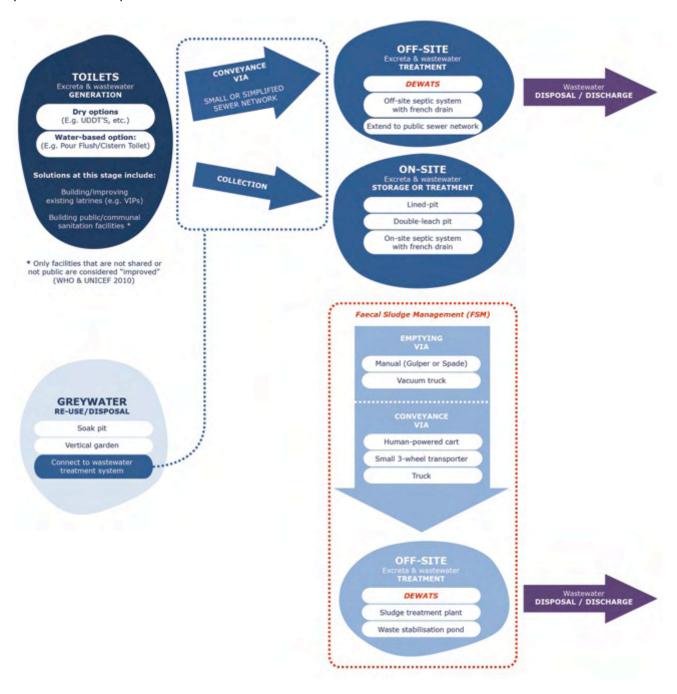
Environmental sanitation is a holistic approach to achieving a sanitary urban environment, considering all aspects related to hygiene, notably those aspects directly linked to human health and quality of life. On the following pages, environmental sanitation options will be included under the categories of:



	Sanitation, excreta & wastewater management (including greywater and faecal sludge)	
	Toilet type (Source of wastewater generation). On-site storage/treatment	6 8 8
	Solid Waste Management	11
	Source separation	12 12
6	Stormwater drainage & discharge of treated wastewater	14
	Groundwater recharge Re-use in agriculture / aquaculture Disposal / discharge	15
	Water supply	17
	Borehole	18
0	Cross-cutting measures	19
	Additional resources & references	20

NOTE: FOR USE AS A GUIDE ONLY

The recommendations within this document are intended as a guide only, as the first steps for planning city sanitation interventions or "which sanitation solutions go where?"


These recommendations assist the identification of feasible environmental sanitation service options for various areas of the city, as well as highlighting areas requiring urgent attention. However, it is important to note that the recommendations within the guide have been determined using data averages and estimations across a large area (macrolevel) – therefore, these recommendations are not detailed prescriptions for immediate, micro-level intervention on the ground.

Sanitation, excreta & wastewater management (including greywater and faecal sludge)

The activities related to sanitation, excreta & wastewater management (including greywater and faecal sludge) can be understood as a part of a holistic "sanitation value chain", which considers all stages between the source of wastewater generation until the final disposal or discharge point. For example:

Recommended solutions for this selected area:

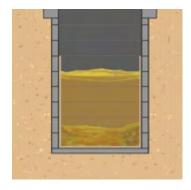
Toilet type (Source of wastewater generation)

Improved individual latrines (e.g. VIPs): might include the construction of a new substructure (e.g. pit lined with cement blocks, sand cement rings or normal blocks), new superstructure (e.g. shelter made from cement blocks with roofing sheets, and walls lined with tiles, paint or plaster) and/or a new user interface (e.g. improved slab, or pour-flush pan). These latrines can be further improved with the addition of a ventilation pipe (Ventilated Improved Pit) or through connections to on-site septic solutions or sewer networks.

Cost estimate for one household:

For new improved latrine $(1.5m \times 1.5m)$:

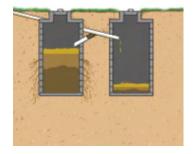
- Superstructure made with cement blocks and corrugated steel roofing = TSh 546,000
- Improved ceramic pour-flush toilet basin, complete with fittings and PVC pipe connections = TSh 31,500


Note: An un-lined or un-reinforced pit cannot support a heavy superstructure (see lined-pit information below).

For raised VIP latrine:

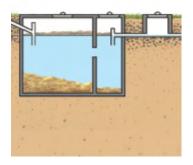
- Superstructure = TSh 500,000
- Substructure (2m deep lined pit) = TSh 475,000
- Integrated latrine slab = TSh 77,000

Annual operation, maintenance and cleaning costs to maintain a hygienic latrine (e.g. buckets, water, hose, gloves, disinfectant, etc.) = TSh 165,000


On-site storage/treatment

Lined-pit: A single or double hole lined with sand-cement rings, trapezoidal cement blocks or normal blocks, **which might also be raised off the ground in areas with high water table or flood-prone.** Lined pits are more permanent and long lasting than unlined-pits, and preventing soil from collapsing. Sludge can be easily removed and the pit re-used many times (See Page 8).

Cost estimate:


- Substructure (3.1m deep) = Lined-pit (un-sealed) TSh 535,000; Lined-pit (sealed) TSh 595,000
- * Sealed pit: is lined with a base-slab and the inner walls lined with cement, plaster or mortar. Sealed pits prevent groundwater contamination from leaching, but fill up faster and require more regular emptying.
- * Un-sealed pit: standard construction using cement-rings or blocks, without lining the inner walls. This allows the liquid content to percolate into the surrounding soil.

Double leach-pit: Two alternating partially lined (sealed on the bottom) pits, where one pit is used until it becomes full. At the same time, wastewater slowly permeates into the surrounding soil, which allows the easy removal of degraded, dewatered soil.

Cost estimate for pour-flush latrine (off-set double pits):

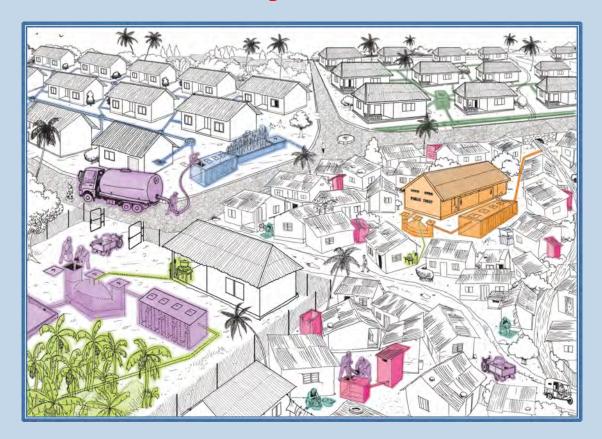
- Substructure = TSh 550,000
- Superstructure = TSh 502,000

On-site septic solution (i.e. septic tank)

+ soak away or french drain: provide partial or full primary treatment of wastewater. A septic tank is a watertight chamber that collects, stores and partially treats wastewater (25-40%) before discharging into the ground via a soak away or French drain.

Cost estimate (for 6-10 people):

TSh 2,000,000 - 3,500,000


Decentralised wastewater treatment solutions (DEWATS):

may utilise anaerobic digestion processes, bio-digesters and/or planted gravel filters to further remove pollutants or pathogens (See below).

Cost estimate (for 6-10 people):

TSh 3,000,000 - 6,000,000

Innovative solutions beyond conventional systems: Introducing DEWATS & FSM

DEWATS Decentralised wastewater treatment solutions: are designed to manage and treat domestic wastewater, septage and pit latrine sludge as well as organic industrial wastewater. As illustrated in the image above, DEWATS offer decentralised and flexible alternatives to centralised sewerage systems, with many possible applications. DEWATS represent the intersection between wastewater generation and treatment before it is discharged into the environment. They can be designed as stand-alone, on-site systems, or connected to an off-site public sewer system.

DEWATS use low-technology components (E.g. Anaerobic baffle reactors, biogas digesters, planted gravel filters) that can be built with locally available materials. As such, they provide an affordable alternative to - or integrated into - centralised sewerage systems, and can be operated and maintained through public or private service providers. DEWATS provide wastewater treatment and disposal solutions for:

- Single households (one source of wastewater) & housing schemes (multiple sources of wastewater)
- Public/communal sanitation centres or ablution facilities
- Greywater disposal
- Faecal sludge management

FSM Faecal sludge management: provides professional, on-demand services for the emptying of pit latrines, followed by the safe treatment and disposal of faecal sludge (combined with transfer station or full treatment system). According to the level of accessibility, services are performed either manually (Gulper with pushcart or small 3-wheel transporter) or with vacuum truck.

Conveyance to off-site treatment

Small or simplified sewer network connected to off-site septic solution: Small sewerage networks are constructed using smaller diameter pipes laid at a shallower depth and a flatter gradient than conventional sewers. Typically these pipes lead to a decentralised wastewater treatment solution (DEWATS).

Cost estimate:

Per linear meter of sewer network:

- 70mm PVC pipe = TSh 17.820
- 110mm PVC pipe = TSh 20,800
- 160mm PVC pipe = TSh 33,150

*This estimate excludes additional costs associated with manhole covers or inspection chambers, which may be +20% depending on the terrain and over site-specific factors. Costs will also vary according to the depth of excavation required. This estimate is for a shallow depth of up to 500mm.

NOTE: This option is only feasible in this area if managed by service provider

Small or simplified sewer network extended to public sewer network: Where appropriate, a network of smaller pipes might be useful for the collection and conveyance of wastewater to a public sewerage network.

Cost estimate:

Per linear meter of sewer network:

- 70mm PVC pipe = TSh 17.820
- 110mm PVC pipe = TSh 20,800
- 160mm PVC pipe = TSh 33,150

+ DAWASA sewer flat rate = Approx. TSh 10,000 per household per month (in addition to water-supply costs)

Faecal sludge emptying, conveyance and treatment

Vacuum system: A truck fitted with a pump, which is connected to a hose that is lowered down into a septic tank or pit-latrine. Sludge is then pumped up into the holding tank on the vehicle, which can normally store between 3000L – 10,000L, before being transported to a sludge treatment plant.

Cost estimate (per trip):

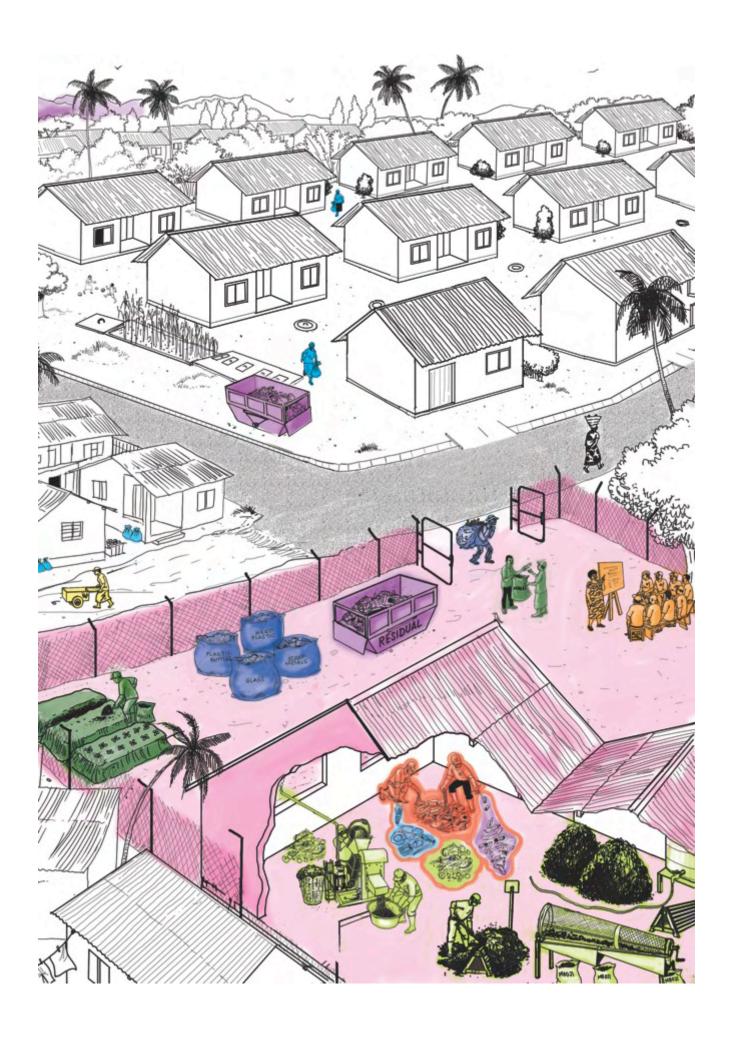
- 18m3 tank = TSh 220,000 (<3km radius); TSh 250,000 (>3km radius)
- 15m3 tank = TSh 170,000 (<3km radius); TSh 200,000 (>3km radius)
- 10m3 tank = TSh 150,000 (<3km radius); TSh 180,000 (>3km radius)
- 7m3 tank = TSh 90,000 (<3km radius); TSh 130,000 (>3km radius)

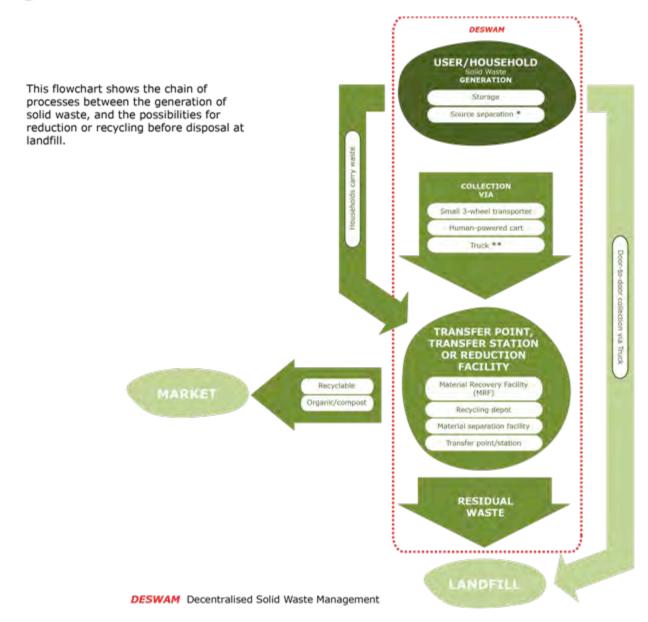
Greywater re-use/disposal

Connect to individual disposal facility (e.g. Vertical garden/agriculture): Greywater can be used to water smallscale, vertical gardens at household level or diverted for irrigation in urban agriculture (See Page 15).

Cost estimate:

Vertical garden (using rice-bag) = TSh 30,000 filled with layers of gravel, soil and sand. On the sides of the bag, holes are cut and seeds are planted.


Vertical garden (constructed) = TSh 130,000 (1.5m high, 40cm diameter) filled with layers of gravel, soil and sand. On the sides of the bag, holes are cut and seeds are planted.


Connect to existing wastewater system:

See Page 6

See Page 15 for more information on how to integrate these options into existing centralised drainage and stormwater infrastructure, following adequate treatment.

Source separation

Source-separation is recommended for all areas, however some specific pre- and postconditions are required:

- Pre-conditions collection methods must be modified:
 - Trucks with separate compartments
 - Recycler collects waste directly from households
- Post-conditions there must be somewhere for the separated waste sources to go, such as a market or further processing industry:
 - Compost
 - Plastic / paper / metal recycling

NOTE: Collection via Truck is optional, although, it is not advisable to separate waste with reduction methods. Due to the large volume of waste collected via truck, separation is too costly and labour intensive.

Household storage: refers to the storage of solid waste in either a plastic bag, dustbin or other form of container that can be sealed/closed to prevent insects or rodents from entering, and reduce the risk of causing disease.

Cost estimate:

- Small plastic dustbin (shown) = TSh 13,000
- Medium plastic dustbin = TSh 22,000
- Large plastic trash bin (shown) = TSh 80,000 100,000

Household source separation: refers to the process of manually separating solid waste into fixed categories, according to collection and re-use demands. Ideally, solid waste is separated into categories such as: organic, recyclable, paper and residual waste, and can be stored in bags, buckets or dustbins prior to collection.

Cost estimate:

See above

Recommended solutions for this selected area:

Solid Waste collection methods

Households carry waste

To truck on schedule: In areas unable to receive door-to-door household collection services, households can carry contained solid waste to the truck according to a collection schedule. Trucks then transport collected solid waste to a final landfill site.

Cost estimate:

N/A

Door-to-door household collection

Truck: refers to motorised solid waste collection services, where waste is collected from households or transfer points/stations and transported to a final landfill site.

Cost estimate for truck collection and disposal at landfill site (Pugu):

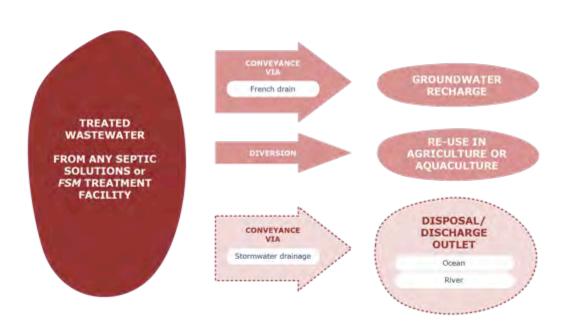
Per trip = 150,000 - 200,000 (depending on the distance to landfill site and the geography of the sub-wards).

Solid waste Collection fees

Cost estimates for formal monthly contract with municipal waste collection services (according to municipal guidelines):

- Low income = TSh 3,000 5,000 / household / month
- Middle income = TSh 10,000 / household / month
- High income = 15,000 / household / month

Formal monthly fees should be paid in all areas, however under some circumstances service providers do a "pay-as-you-go" system, where each bag of waste deposited incurs a fee of TSh 500 – 3,000 (depending on the weight)



Stormwater drainage & discharge of treated wastewater

The aforementioned solutions for wastewater treatment are designed to be integrated into existing centralised drainage and stormwater infrastructure (where possible), **following adequate treatment**. Alternatively, treated waster can be discharged on-site into the groundwater or re-used in agriculture/aquaculture.

Post-treatment disposal options includes the following:

* In areas where stormwater drainage does not connect to discharge outlets located at rivers or the ocean, drainage needs to be extended. To ensure this is done correctly, it is advised the construction of stormwater drainage should occur first at these discharge outlets, and work backwards up-stream towards the source of generated wastewater.

Additional factors and planning requirements to be considered:

- Regulated discharge permits
- Regulated number of sources discharging into one area
- Alternative diversions for water re-use (e.g. agriculture / aquaculture)

Recommended solutions for this selected area:

Groundwater recharge

French drain: is a trench that is filled with gravel, which then acts as a conduit for water runoff. A common design for a French drain might include a perforated drainage pipe wrapped with filter cloth/membrane, submerged in course aggregate (gravel) and sloped for drainage.

Cost estimate:

- Household (< 8 people; discharge < 1m3/day) = TSh 300,000
- Communal/public (10-100 people; discharge 1-5m3/day) = TSh 500,000 - 1,000,000

Soak away (or soak pit): is essentially a pit designed with the purpose of allowing treated wastewater to infiltrate into the ground. A soak pit should be located more than 50m from drinking water sources (e.g. Boreholes), and never less than 2m above the groundwater table.

Cost estimate:

Diameter maximum 3m (for 6-10 people), depth of 1.5m, using perforated blocks or spaced blocks = TSh 2,000,000 -3,500,000 (depending on availability of construction material)

Re-use in agriculture / aquaculture

Re-use of treated wastewater in agriculture and/or aquaculture: helps to promote sustainable farming practices and ecosystem services, as well as conserving scarce water resources.

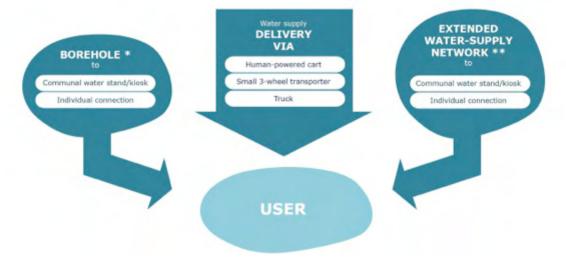
Using treated wastewater for irrigation may also reduce purification levels and fertilisation costs, because soil and crops serve as biofilters, and wastewater contains nutrients.

Treated wastewater is also beneficial when used in aquaculture, as the nutrients provide natural food for fish.

Cost estimate:

Costs vary significantly based on the volume of wastewater generated, as well as the length of drainage connecting the source of treated wastewater to the point of discharge.

Disposal / discharge



Disposal / discharge outlet: is the point where stormwater and treated wastewater is released back into the surface water bodies, e.g. ocean or rivers.

Cost estimate:

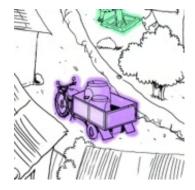
Costs vary significantly based on the volume of wastewater generated, as well as the length of drainage connecting the source of treated wastewater to the point of discharge.

- Borehole connections should not be located within a 50m radius of unlined pit latrines, as per Tanzanian Law.
- ** If the centralised water supply network is extended, the wastewater network and treatment facilities must also be extended in the same areas, so that consumption and discharge quantities are matched

Recommended solutions for this selected area:

Borehole

Borehole: is a narrow shaft bored into the ground, either vertically or horizontally, in order to access underground water reserves. Individual boreholes may be accessed by one household or shared by a number of households.


Individual connection: individual boreholes may be accessed by one household or shared by a number of households.

Cost estimate:

Construction + pump = TSh 4-6 million (depending on location, depth of borehole required to reach fresh water, ground conditions)

There will be on-going costs for maintenance of pump, and occasional cleaning of borehole when necessary.

Water supply delivery

Manual pushcart, 3-wheel transporter: refers to humanpowered or simple, motorised delivery methods for supplying water to households with limited access.

Cost estimate:

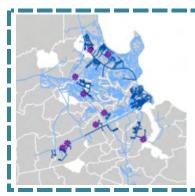
- Fresh water: 1m3 (1,000L) = TSh 15,000-35,000
- During times of water-scarcity: 5L = TSh 500-1,000

Truck: refers to motorised water-delivery services, where water which is transported from various water sources (e.g. ground or surface water) to households and pumped into storage facilities using a hose.

Cost estimate:

For truck delivery within a 3km radius:

Fresh water: 5m3 (5,000L) = TSh 50,000-70,000


For truck delivery within a 3-6km radius:

• Fresh water: 5m3 (5,000L) = TSh 60,000-80,000

For truck delivery within a 3-6km radius (with difficult terrain):

• Fresh water: 5m3 (5,000L) = TSh 65,000-85,000

Extend to water supply network

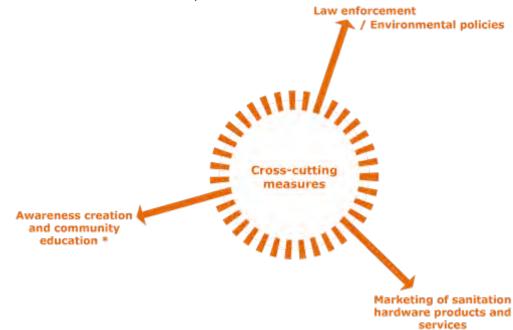
Centralised water supply network refers to a vast network of underground pipes, which connect water sources (e.g. ground of surface water) directly to the end users.

Individual connection: refers to a household connection to the public water supply network.

Cost estimate:

- Connection to DAWASA network = TSh 380,000-420,000
- Per m3 water = TSh 1,098

Cross-cutting measures



Certain cross-cutting measures need to occur wherever a sanitation intervention takes place!

The following cross-cutting measures include "software" activities to complement and reinforce the abovementioned "hardware" or service options:

Recommended measures for this selected area:

On-site sanitation marketing: might come in the form of a mobile Sanitation Exhibition, which moves around to various communities to exhibit information on sanitation options and technologies.

Cost estimate:

- One day Sanitation Exhibition (includes 3-4 staff & volunteers) = TSh 3,400,000 (+ TSh 300,000 for faecal sludge expert to attend one day):
 - o 1 day on site
 - o 1 day set-up
 - o 1 day take-down/re-stock

Additional resources & references

For more detailed information on the options within this catalogue, please refer to the following resources:

BORDA, 2009

"Decentralised Wastewater Treatment Systems (DEWATS) and Sanitation in Developing Countries: A Practical Guide"

WEDC, 2004

"Catalogue of Low-cost Toilet Options: for Dar es Salaam"

Eawag / Sandec, 2014 "Compendium of Sanitation Systems and Technologies"

2nd Edition

Eawag / Sandec, 2014 "Faecal Sludge Management book"

UN-HABITAT, 2008 "Constructed Wetlands Manual"

Eawag / Sandec, 2014
"Anaerobic Digestion of
Biowaste in Developing
Countries: Practical
Information and Case
Studies"

People's Development Forum (PDF) & Polytechnic University of Madrid, 2013 "Bidhaa za usafi wa mazingira kwa bei nafuu: CHOO BORA na

MAZINGIRA SAFI. Wlaya

ya Chamwino"

References

- Bill & Melinda Gates Foundation (BMGF) (2012) Water, sanitation & Hygiene Strategy Overview, Global Development Programme.
- Gutterer, B., Sasse, L., Panzerbieter, T. and Reckerzügel, T. (2009) *Decentralised Wastewater Treatment Systems (DEWATS) and Sanitation in Developing Countries: A Practical Guide*. Loughborough University, UK: Water, Engineering and Development Centre (WEDC).
- Obika, A. (2004) Low-cost toilet options a catalogue: Social marketing for urban sanitation. London, UK: WEDC.
- Tilley, E., Lüthi, C., Morel, A., Zurbrügg, C. and Schertenleib, R. (2008) Water and Sanitation in Developing Countries: Compendium of Sanitation Systems and Technologies. Swiss Federal Institute of Aquatic Science and Technology (EAWAG): Dübendorf, Switzerland
- WSSCC (2000) Bellagio Statement: Clean, Healthy and Productive Living: A New Approach to Environmental Sanitation [online], WSSCC Working Group Environmental Sanitation, Swiss Federal Institute of Aquatic Science and Technology (EAWAG): Dūbendorf, Switzerland.

